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Abstract 
Early pathogen exposure detection allows better patient care and faster implementation 
of public health measures (patient isolation, contact tracing).  Existing exposure 
detection most frequently relies on overt clinical symptoms, namely fever, during the 
infectious prodromal period.  We have developed a robust machine learning method to 
better detect asymptomatic states during the incubation period using subtle, sub-clinical 
physiological markers.  Using high-resolution physiological data from non-human 
primate studies of Ebola and Marburg viruses, we pre-processed the data to reduce 
short-term variability and normalize diurnal variations, then provided these to a 
supervised random forest classification algorithm. In most subjects detection is 
achieved well before the onset of fever; subject cross-validation lead to 52±14h mean 
early detection (at >0.90 area under the receiver-operating characteristic curve). Cross-
cohort tests across pathogens and exposure routes also lead to successful early detection 
(28±16h and 43±22h, respectively).  We discuss which physiological indicators are most 
informative for early detection and options for extending this capability to lower data 
resolution and wearable, non-invasive sensors.  
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Introduction 
 
We have developed a method for assessing viral exposure based solely on host 
physiological signals, in contrast to conventional diagnostics based on fever or 
biomolecules [1] of the pathogen itself or the host’s immune response.  Early warning of 
pathogen exposure has many advantages: earlier patient care increases the probability 
of a positive prognosis [2-5] and faster public health measure deployment, such as 
patient isolation and contact tracing [6-8], which reduces transmission [9]. Following 
pathogen exposure, there exists a “pre-symptomatic” incubation phase where overt 
clinical symptoms are not yet present [10].  This incubation phase can vary from days to 
years depending on the virus [11,12], and is reported to be 3-25 days for many 
hemorrhagic fevers [3,4,13,14].  Following this incubation phase, the prodromal period 
is marked by non-specific symptoms such as fever, rash, loss of appetite, and 
hypersomnia [10]. Figure 1 shows a conceptual model of the probability of infection 
detection Pd during different post-exposure periods (incubation, prodrome, and virus-
specific symptoms) for current specific and non-specific (i.e., symptoms-based) 
diagnostics.  We also include what may be considered an “ideal” sensor system capable 
of detecting viral exposure even during the earliest incubation period. We hypothesize 
that quantifiable abnormalities (versus a diurnal baseline, for instance) in high-
resolution physiological signals, such as those from electrocardiography, 
hemodynamics, and temperature, before overt clinical signs could be a basis for the ideal 
signal in Figure 1, thereby providing advanced warning (the early warning time, ∆t) of 
on-coming illness.  
 
In addition to characteristic clinical presentations, most infectious disease diagnosis is 
based upon identification of pathogen-specific molecular signatures (via culture, 
PCR/RT-PCR or sequencing for DNA or RNA, or immunocapture assays for antigen or 
antibody) in a relevant biological fluid [10,15-22].  Exciting new approaches allowed by 
high-throughput sequencing have shown the promise of pre-symptomatic detection 
using genomic [23,24] or transcriptional [25] expression profiles in the host [26].  
However, these approaches suffer from often prohibitively steep logistic burdens and 
associated costs (cold chain storage, equipment requirements, extremely qualified 
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operators, serial sampling): indeed, most infections presented clinically are never 
definitively determined etiologically, much less serially sampled.  Furthermore, 
molecular diagnostics are rarely used until patient self-reporting and presentation of 
overt clinical symptoms, such as fever. Past physiological signal-based early infection 
detection work has been heavily focused on bacterial infection [27-32], and largely 
centered upon higher time resolution analysis of body core temperature [32,33], 
advanced analyses of strongly-confounded signals such as heart rate variability [28-30] 
or social dynamics [34], or sensor data fusion from already symptomatic (febrile) viral-
infected individuals [35].  While great progress has been made in developing techniques 
for signal-based early warning of bacterial infections, we are unaware of any effort in 
extending these techniques to possibly life-threatening viral infections.  
 
Electronics miniaturization has led to a wave of wearable sensing technologies for 
health monitoring [36], and increasingly more processing power is available to 
consumers to make meaningful use of these collected data [37].  Inspired by these 
developments, we envision a low-profile, robust, wearable, personalized and multi-
modal physiological monitoring system persistently measuring signals capable of 
sensitive pathogen infection detection. Such a system could cue the use of highly 
specific (but expensive) diagnostic tests, prompt low-regret responses such as patient 
isolation and observation, or advise clinicians of fulminant complications in already 
compromised patients. 
 
We use high-resolution physiological data from non-human primates (NHPs) exposed 
via intramuscular (IM) or aerosol routes to either of two viral hemorrhagic fevers (Ebola 
virus [EBOV] and Marburg virus [MARV]) to build this novel high sensitivity, low 
etiological specificity (that is, not informative of particular pathogens) processing and 
detection algorithm.  Data is normalized to remove diurnal rhythms, aggregated to 
reduce short-term fluctuations, and then provided to a supervised binary classification 
(exposed and unexposed) machine learning algorithm as illustrated in Figure 2(a). We 
tested and compared several methods; RFs had the best positive predictive value 
(discussed below) and were chosen for the rest of our analysis.  RFs were also chosen 
for their robustness against feature-rich and noisy data while minimizing over-fitting. 
Random forests are grown (trained) at two post-exposure stages, allowing the 
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algorithms to adapt to physiological changes between incubation and prodromal 
phases. One RF is trained using pre-fever physiological data and the other using post-
fever data. Both RFs include pre-exposure data to build the unexposed class. Subject 
data is separated into training and testing sets, and every testing subject’s data is 
provided to the RF model for an exposure prediction every 30 min.  After using binary 
integration and a constant false alarm thresholding approach to further reduce false 
alarms, mean exposure declaration times are found to range from 21h (for EBOV) to 69h 
(for MARV) before the onset of fever defined as 1.5ºC above a diurnal baseline [38] 
sustained for two hours. Figure 2(b) shows a block diagram of the declaration process. 
We note that all physiological data is given to our algorithm without regard to exposure 
or fever status; in other words, our approach does not require information on exposure 
or fever times for successful classification and detection.   
 
Implementing this type of early-warning algorithm could save lives of health care 
workers, military service members, patients, and other susceptible individuals.  During 
the 2014 West Africa Ebola outbreak, for instance, health care workers at higher risk of 
viral exposure could have been monitored persistently for the earliest possible 
indications of viral exposure.  More commonly, patients in post-operative or critical 
care units could be monitored for infection and treated well before clinical symptoms, 
viremia/bacteremia, or septic shock [39]. In future, etiologically-specific iterations of 
this approach, knowledge of causative pathogens could inform very early therapeutic 
intervention.  Furthermore, using very feature sparse datasets, such as those that could 
be collected using wearable sensor platforms, would enable this technique to be 
implemented in non-ideal clinical, athletic, and military environments. Transitioning 
this technology to these contexts is the focus of ongoing work.  
 
 
Results 
 
We use high resolution physiological data collected during previously conducted 
natural history studies (presently unpublished) at the United States Army Medical 
Research Institute of Infectious Diseases (USAMRIID) to build a binary classification 
random forest machine learning model [40] for detecting whether an animal had been 
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exposed to a viral hemorrhagic fever virus (either Ebola or Marburg virus).  Supervised 
machine learning algorithms observe characteristics in data that belong to pre-
determined classes, then place new, unseen data into the appropriate class based on 
similar characteristics.  Here, we define pre- and post-exposure as the two classes since 
“infection” is not a discrete event.   
 
We experimented with several classification methods, including Naïve Bayes[41], k-
Nearest Neighbors [42], and random forests (RFs), and compared each across 
sensitivity, specificity, and early warning time metrics. All classifiers had positive 
predictive values, yet chose RFs for several reasons (results for other classifiers are 
found in Supplementary Figure 1).  Most importantly, Random Forests require no 
assumptions about the statistical independence of features, which is critically useful 
given highly correlated physiological feature sets.  RFs also allow for the calculation of 
quantitative feature performance; this also facilitates post-hoc comparison to the known 
viral pathology sequence to mechanistically understand why these physiological 
anomalies are present.  Furthermore, the most discriminating features can be selectively 
chosen to re-grow forests and allow for better algorithm performance with fewer 
feature inputs.  Next, a collection of trees within each model grown on different subsets 
of the full training set prevents over-fitting (which is commonly seen in single decision 
trees) and reduces variance.  Finally, in empirical comparisons of many machine 
learning methods, RFs consistently rank among the best approaches [43], and we too 
found RFs to produce the best outputs among the classifiers tested.  We employ RFs for 
both cross-study and intra-study validations using different testing and training 
datasets (details in Methods). 
 
Before analysis, several data pre-processing steps are required to remove time as an 
implicit feature in our physiological datasets.  First, data is normalized and aggregated 
subject-by-subject to eliminate short-term fluctuations and daily diurnal rhythms.  From 
these normalized datasets, mean and quantiles are calculated for adjacent 30 minute 
time windows (see Figure 3); these first- and second-order statistical measures are the 
features provided to the machine learning algorithm.  Two RF models are trained to 
detect the post-exposure class at distinct time epochs: one model is tuned to detect 
subtle data markers during the incubation phase prior to fever, while the second model 
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is tuned for the early prodromal phase (i.e., onset of overt febrile symptoms) where 
temperature-related features emerge as powerful discriminants. The training data for 
the pre-exposure class for both models is a subset of baseline data prior to challenge 
and the quantity of training data has been balanced for the negative (pre-exposure) and 
positive (post-exposure) classes to avoid biasing one class over the other. For the rest of 
our analysis, data from 12h before and 24h after challenge are excluded from 
performance metrics due to differences in animal handling and sedation for exposure.  
Additional details on data pre-processing and algorithm development may be found in 
the Methods section.  
 
One output of RFs is a measure of relative feature importance; that is, which features 
provide the most accurate separation between classes. The most discriminating features 
for the pre-fever and post-fever RF models vary among four feature types derived from 
temperature, ECG, blood pressure, and respiration measurements.  (See Supplementary 
Table 1 and Supplementary Figures 2-3 for a complete listing of most discriminating 
features.) The algorithm reports features that follow clinical symptomology, namely 
that core temperature in the post-fever, prodromal model is the highest ranking in 
feature importance. Before fever, however, subtle ECG and blood pressure derived 
features seem to be the highest ranking in feature importance, as is observed at the 
earliest stages of sepsis [28-31] (further noted in the Discussion below).   
 
 
Intra-study (3-fold) cross-validations 
 
Intra-study tests (i.e., training and tested with data from the same NHP study) are used 
first for testing our model’s accuracy and early warning capability.  RFs are built using 
two-thirds of the subjects then tested for each subject in the remaining one-third of left-
out subjects; the process is repeated three times, allowing each subject in the study to be 
evaluated once as part of a left-out test data set.  The resulting outcomes for all subjects 
are combined and evaluated in subsequent performance metrics.  Three-fold cross-
validation is chosen due to limited study sample sizes. These intra-study tests 
necessarily hold constant factors such as animal species, exposure route, and virus, and 
thus provide insight into the model’s performance when these factors are known or are 
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constant. Figure 4 shows representative examples of our algorithm’s output for each 
intra-study test.  Every 30 minutes, the combined score (see Figure 2) of the pre- and 
post-fever forests is plotted, representing the a posteriori probability that the subject is in 
the “exposed” class.  In other words, values closer to 1.0 indicate a higher confidence 
prediction for a subject having been exposed to the virus. Qualitatively, we note that 
most subjects’ scores rise around the challenge time (though data 12h before and 24h 
after exposure are disregarded). To quantify performance, we calculate probability of 
infection detection Pd and probability of false declaration Pfa for the collection of system 
outputs (updated every 30 minutes).  Associated with these are the 95% confidence 
intervals for a standard Gaussian.  In cases where no false declarations were made 
within the study sample, we provide an upper bound on Pfa.  For the MARV IM study 
(system Pd=0.95±0.008, Pfa <0.002, ∆tmean=74.5±6.0h), the scores rise sharply after challenge 
and remain high throughout the remainder of the study.  The MARV aerosol (system 
Pd=0.79±0.02, Pfa <0.002 ∆tmean=44.4±26.1h) and EBOV aerosol (system Pd=0.65±0.02, 
Pfa=0.01±0.005, ∆tmean=23.0±30.3h) studies show moderate elevations at challenge time and 
fluctuate the first few days before rising sharply 12 to 24h before acute fever (vertical 
red line).  This behavior can be explained by trends in the individual forest scores.  The 
pre-fever forest is trained on data with subtle, sub-clinical changes from pre-exposure 
baseline which become more obvious and detectable in the hours leading up to fever 
onset (and when the animal is anesthetized prior to challenge). Variability in the 
combined score before fever can be understood both by considering the individual 
animal’s immune response to the pathogen, and the inter-individual variability of this 
response when training the algorithm across subjects.  Furthermore, variability in the 
pre-fever results and lower early warning time for the EBOV study may be due to a 
much lower target exposure dose (100pfu target) than either of the MARV studies 
(1000pfu target). After febrile symptoms, the post-fever forest dominates the score as it 
indicates a strong and easily detectable deviation from the baseline and is how current 
clinical diagnosis is largely based.  
 
To quantitatively assess whether a subject has been exposed, we use a false positive 
threshold method (details in Methods section) to build a binary decision from the RF 
models, then employed a binary integration step to make a final declaration that a 
subject is exposed.  These two steps afford much greater sensitivity and specificity than 
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relying on RF model score outputs alone [44].  Briefly, using baseline pre-exposure data, 
we threshold scores from each RF model and make an ‘initial detection’ decision every 
30 minutes.  Next, we perform binary integration which accumulates the number of 
positive detections, m, observed in the past n time steps. At each time step, if the 
accumulated detections are greater than or equal to m (here we used m=11 and n=24), 
we output a ‘declaration’ that the subject is in the exposed class at that time step. We 
find threshold values for each RF model by sweeping across a series of possible 
thresholds from 0 to 1.  For each threshold in the series, the proportion of false 
declarations Pfa is calculated using 3-fold cross validation, in the same manner as  
described for the RFs.  Thresholds are estimated as the smallest value for each RF model 
that supported a desired constant false positive level (here we chose Pfa=0.01).  Figure 4 
shows our algorithm’s combined score output (after thresholding and binary 
integration, see Figure 2b), declarations (green triangles), and onset of fever (red vertical 
lines) for three representative subjects in each study.  The time between our algorithm’s 
first true declaration (green line) and fever onset is defined here as the early warning 
time (∆t).  (Each subject’s early warning times, as well as additional algorithm 
performance parameters, may be found in Supplementary Table 2.)  As with Pd and Pfa, 
we report 95% confidence intervals associated with each ∆t.  However, unlike Pd and Pfa, 
the number of trials for early warning time are small (20 subjects per test at most) so the 
confidence intervals are based on t-distributions with the degrees of freedom equal to 
the number of subjects minus 1. 
 
The early warning capacity for these intra-study tests demonstrate the ability to find 
meaningful ∆t values when the animal species, exposure route, and viral agent is 
known.  We can imagine a context where such information is known, such as a 
healthcare worker experiencing an accidental needle stick in a known outbreak, or a 
laboratory employee after an accidental protective equipment breech.  However, most 
exposures will occur when many of these variables are unknown or impossible to 
know, which emphasizes the need to experiment with testing and training our 
algorithm across these variables.   
 
Cross-study Validations 
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Next, we used cross-study validations to indicate our model’s extensibility beyond a 
given animal model, pathogen, or exposure route.  In one version of a cross-study 
validation, all data from one NHP study are used to train RF models, all data from a 
second study are used to test that model, and an identical false positive thresholding 
and binary integration method for detection/declaration as used above is applied.  
Algorithm outputs and detection plots are interpreted identically as in the intra-study 
validation tests. Figure 5 shows one representative subject’s output for each of the 
(train/test) MARV intramuscular/MARV aerosol (system Pd=0.0.81±0.02, Pfa =0.04±0.01, 
∆tmean=42.5±22.1h) and EBOV aerosol / MARV aerosol (system Pd=0.72±0.02, Pfa 
=0.01±0.005, ∆tmean=28.3±16.2h)  cross-study validations.  These combinations are chosen 
to hold the pathogen and exposure routes constant, respectively. The EBOV aerosol / 
MARV aerosol validation test also uses studies with different target dose exposure 
levels, which may explain the lower early warning time; despite this, we still observe 
nearly 1 day of early warning.   
 
In another version of a cross-study validation, we tested the most generalized scenario 
where all data across all three studies are used to test and train a RF model.  In this 
aggregate study where the species of animal, exposure route, virus, nor target dose are 
held constant, we find a system Pd=0.80±0.01, Pfa <0.0005, and ∆tmean=52.8±12.9h.  These 
results strongly suggest that our model is not limited to particular viruses or exposure 
routes, but rather is capable of indicating a general patho-physiological state during the 
viral incubation period in NHPs. 
 
 
Evaluating Algorithm Performance  
 
We evaluated our algorithm’s performance by analyzing the probability of detection 
(Pd, i.e., correctly declaring a subject as being exposed after the viral challenge) versus 

false positives (Pfa, i.e., incorrectly declaring a subject as exposed before the viral 
challenge), known as a receiver operating characteristic (ROC) curve [45].  ROC curves 

describe the sensitivity (Pd) and specificity (1-Pfa, i.e., not informative of the causative 
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agent) of a test and can be partially summarized by the area under the curve (AUC).  An 
AUC of 1.0 refers to a perfectly sensitive and specific detector, whereas a value of 0.5 
indicates that the test cannot distinguish between classes and is no better than a coin-
flip. Figure 6 shows ROC curves for the MARV aerosol intra-study, the MARV 
IM/MARV aerosol cross-study tests, and the aggregate study test using all available 
data; additional ROC curves for all intra-study and cross-study validations can be 
found in the Supplementary Figures 4-5.  We conclude that for each intra-study and 

cross-study test that the pre-fever AUC is ≥0.90, and thus each pre-fever RF model has 
significant discriminating power for early detection (details in Supplementary Table 3). 
All post-fever RF models have AUC values approaching one, indicating nearly perfect 
performance during febrile symptoms as may be expected given such as clear anomaly 
compared to baseline values.  
 
Perhaps the most clinically useful metric of our algorithm is the early warning time, 
defined as the time difference between our algorithm’s first correct ‘declaration’ and the 
onset of fever (1.5ºC above a diurnal baseline [38] sustained for two hours). Another 
useful metric from an algorithm development perspective is the ROC AUC for different 
subsets of study data collected before fever (e.g. the interval where early warning is 
meaningful).  This pre-fever ROC AUC provides a robust metric for performance 
comparisons both across studies and evaluating system design trade-offs such as 
reduced feature sets, as discussed below.   
  
Extending to non-invasive monitoring platforms 
 
Physiological data features provided to our algorithm were collected using surgically 
implanted monitoring devices; such data could never be expected from military service 
members, health care workers responding to an outbreak, hospital patients, or the 
general public.  As an in silico simulation for limiting our dataset to what may be 
collected using a wearable-type monitoring device, we reduced the considered feature 
set to include only certain subsets: ECG-only, ECG and temperature, heart rate and 
temperature, temperature alone, and heart rate alone. Successful use of ECG data as a 
predictor of physiological compensatory potential during shock has been reported 
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[28,29].  Ambulatory Holter monitor devices collect exactly this type of data [46], as do 
even less obtrusive devices for performance athletes. Figure 7 shows algorithm output 
for one representative subject and ROC curves for the MARV aerosol study using this 
ECG-only feature subset (including RR, QRS, PR, and QT intervals; the relative 
importance of each feature is shown in Supplementary Figure 6).  Although the 
sensitivity of this ECG-only algorithm decreases slightly relative to the baseline feature 
set (with a Pd=0.78±0.02 at a Pfa<0.001 vs a Pd=0.79±0.02 at the same Pfa), the mean early 
warning time of 51.1±23.0h is still very clinically useful.  Results for other reduced 
feature subsets of the MARV aerosol study are provided in Figure 8 and additional 
feature importance metrics and corresponding ROC curves may be found in 
Supplementary Figures 6-7. 
 
 
Discussion 
 
Non-biochemical detection of viral incubation periods using only physiological data 
presents a fundamentally new approach to infectious disease care. Previous work has 
shown that reducing transmission during the viral incubation period is as or more 
effective an intervention as reducing the inherent transmissibility (R0) of the pathogen in 
controlling emerging outbreaks [9].  However, there is no existing method to detect this 
pre-symptomatic incubation period extensible to mobile settings or wearable sensor 
systems.  We present the first attempt to build a multi-modal machine learning 
algorithm capable of determining this incubation period using physiological signals of 
NHPs infected with viral hemorrhagic fevers.  Using the Random Forest method we 
avoid building over-fit models, and successful testing and training on different subsets 
of data demonstrate that we avoid over-fitting.  Further, cross-study validations show 
the promise of extending this approach beyond a given animal model, exposure 
method, or virus. All intra-study and cross-study validations resulted in positive mean 
early warning times, with times that would be actionable (>20h) for intervention or 
other preventive measures.  While we chose a target system Pfa~0.01 that was supported 
by the limited subject numbers in the studies available, this would not lead to an 
acceptable daily false alarm rate – reducing this critical system parameter to more 



 Page 12 of 32 

clinically-acceptable levels (we estimate Pfa ~10-3 or less) is the subject of on-going work, 
and may require larger sample sizes or more refined processing algorithms. 
 
We postulate that immuno-biological events – particularly systemic release of pro-
inflammatory chemokines and cytokines from infected phagocytes [47-51], as well as 
afferent signaling to the central nervous system [52,53] – are recapitulated in 
hemodynamic, thermoregulatory, or cardiac signals which may be more easily 
measured and assessed than biomolecule markers for viral infection (via sequencing 
[23,24,26] or immunocapture approaches [15,16]).  For instance, prostaglandins (PG) are 
up-regulated upon infection (including EBOV [54,55]) and intricately involved in the 
non-specific “sickness syndrome” [56]; the PGs are also known to be potent vascular 
mediators [57] and endogenous pyrogens [58,59].  Past work has clarified how tightly 
integrated, complex, and oscillating biological systems can become uncoupled [60-62] 
during trauma [63] or critical illness [31,64] which would be captured in the 
comprehensive, multi-modal physiological datasets used in our present study. 
Rigorously pursuing this hypothesis would require additional high temporal resolution 
datasets, including high-resolution biochemical, immunological, neurological, and 
cardiovascular information.    
 
Previous work on genomic [23,24] profiles of peripheral blood cells following acute 
influenza infection indicate specific host responses at just ~45h following exposure, 
corresponding to ~35h of early warning time.  Our combined results suggest that the 
classic understanding of an asymptomatic incubation phase may be incomplete: during 
viral incubation, subtle sub-clinical cues (both genomic, transcriptional, and 
physiological) can be detectable with sufficiently high-resolution sensor and analysis 
systems. Better understanding of how biomolecular changes are captured in systemic 
physiological signals during viral infection would open further opportunities for better 
therapeutic administration both before and during infection, quarantine or isolation, 
and vaccine development. 
 
Detecting pathogen exposure before self-reporting or overt clinical symptoms affords 
great opportunities in clinical care and public health measures.  However, given the 
consequences of using some of these interventions and the lack of etiological agent 
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specificity in our algorithm, we envision our current approach to be a trigger for ‘low-
regret’ actions rather than necessarily guiding medical care.  For instance, using our 
high sensitivity approach as an alert for limited high specificity confirmatory 
diagnostics (such as sequencing or PCR-based) could lead to considerable cost savings 
(an “alert-confirm” system).  Public health response following a bioterrorism incident 
could also benefit from triaging those exposed from the “worried well.”  Ongoing work 
focuses on adding enough causative agent specificity to discern between bacterial and 
viral pathogens; even this binary classification would be of use for front-line therapeutic 
or mass casualty uses.  Eventually, we envision a system that could give real-time 
prognostic information, even before obvious illness, guiding patients and clinicians in 
diagnostic or therapeutic use with better time resolution than ever before. 
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Methods 
 
Viruses 
The Marburg Angola isolate used was USAMRIID challenge stock “R17214” (Marburg 
virus H.sapiens-tc/ANG/2005/Angola-1379c).  Cynomolgus macaques were exposed 
to Ebola virus/H.sapiens-tc/COD/1995/Kikwit-9510621 (EBOV) at a target dose of 100 
pfu (7U EBOV; USAMRIID challenge stock “R4415”; GenBank # KT762962). 
 
Description of Studies 
Dr. William Pratt provided physiological data in NSS format (Notocord, Inc.) from 
studies previously conducted at the United States Army Medical Research Institute of 
Infectious Diseases (USAMRIID). Research was conducted under an IACUC approved 
protocol in compliance with the Animal Welfare Act, PHS Policy, and other Federal 
statutes and regulations relating to animals and experiments involving animals. The 
facility where this research was conducted is accredited by the Association for 
Assessment and Accreditation of Laboratory Animal Care, International and adheres to 
principles stated in the Guide for the Care and Use of Laboratory Animals, National 
Research Council, 2011.  In each study, remote telemetry devices (Konigsberg 
Instruments, Inc., T27F for MARV studies and T37F for 3 subjects in the EBOV study, 
and Data Sciences International Inc., L11 for 3 subjects in the EBOV) were implanted 3 
to 5 months before exposure, and, if used, a central venous catheter was implanted 2 to 
4 weeks before. NHPs were transferred into BSL4 containment 5 to 7 days before viral 
exposure, and baseline pre-exposed data collected for 4 to 6 days before. Subjects were 
exposed under sedation via either aerosol or intramuscular injection depending on the 
study.  The exposure time used in our model is based upon the time of intramuscular 
injection or when a subject was returned to the cage following aerosol exposure (~20 
min).  All subjects were monitored until death or the completion of the study. The 
devices measure several raw physiological signals, which were translated to blood 
pressure (sampling frequency fs = 250Hz), ECG (fs = 500Hz), temperature (fs = 50Hz), and 
pulmonary (fs = 50Hz) features. We analyzed data from three separate studies, detailed 
in Table 1. 
 
Physiological Data Pre-processing 
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Physiological data is time dependent (that is, sequential data) and is subject to short-
term fluctuations and daily diurnal rhythms. RF classifiers, however, require time and 
subject independent data. To reduce diurnal and subject dependencies from the data, 
each subject is pre-processed individually. The first step is to estimate baseline diurnal 

statistics of the data by computing a mean, 𝜇!, and standard deviation, 𝜎! , for 30-minute 

intervals 𝑖 = 1,… ,48 over an average 24-hour pre-exposure period. The data for that 
time of day is normalized by subtracting the mean and dividing by the standard 

deviation, (𝑥!(𝑗)− 𝜇!)/𝜎!  for each data sample j in the ith interval. Data are then 
partitioned into sequential k-minute blocks and aggregated by calculating a set of three 
summary statistics on each block: mean and 25% and 75% quantiles. These summary 
statistics calculated on each time-independent signal are the input features for the 
random forest algorithm. For example, 30-minute blocks for two days of 4 raw 
physiological signals yields 96 time points with 12 data features. Although the 
normalization period and aggregation blocks (k) are not required to be the same, we 
have chosen a common interval of 30 minutes for both. Data samples that correspond to 
measurements before challenge are labeled “0” to denote the pre-exposed class and 
those after challenge are labeled “1” to denote the post-exposure class. 
 
Random Forest Algorithm 
 
Our model is composed of two random forests (RFs): one RF is grown using training 
data prior to fever onset and an equal number of randomly chosen negative data 
samples from the pre-exposure class.  Since the number of subjects in each study is very 
small, we do not have a separate validation set. However, test data is always held out 
until the final evaluation step. Each RF contains 50 classification decision trees grown 
on random subsets of data and features. The trees cast their “votes” for class “0” or “1”, 
and the forest returns the class with the most votes. This process helps prevent 
overfitting, which single decision trees tend to do. RFs are particularly good for 
calculating feature importance metrics, and we use these metrics to find the most 
predictive features for hard to classify (pre-fever) days. Initially all features are 
considered, but once the subset of most predictive features is determined within a cross-
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validation training set, all RF’s are regrown (same training set) on this 15 feature subset 
to produce the final models upon which the corresponding cross-validation testing set 
performance results are based.    Relative importance scores for each of the top 15 
features from each study are provided in the Supplementary Materials. 
 
Model Performance Evaluation: Cross-Study and Inter-study validations 
 
Model performance may be evaluated by separating subjects into testing and training 
sets.  We conduct two modes of evaluation: cross-study, where testing and training data 
are from different studies (and thus can vary in subject species, virus, and exposure 
route), and intra-study, where both testing and training datasets are from the same 
study (with constant subject species, pathogen, and exposure routes) thus allowing 
model evaluation across individuals. We used a 3-fold cross-validation for the intra-
study tests by randomly assigning subjects into three partitions. Subjects from two of 
those partitions form the training set to build the model, while one subject at a time 
from the held-out partition is tested against that model. Model building and subject 
testing is repeated for all subjects in a study.  Most cross-study evaluations used all data 
from one study to train the model, and all subjects of another study are tested using that 
model.  In the aggregated cross-study validation, we used a 3-fold cross-validation just 
as with the intra-study tests, including random assignment of subjects into the three 
partitions.  Each partition included subjects from each of the three studies. 
 
False Positive Thresholding, Binary Integration and Algorithm Performance Metrics 
 
We make declarations of exposure using a two-stage detection process (see Figure 2). In 
stage one of the detection process, RF model prediction scores (between 0 and 1 for 
every 30 minute interval) are thresholded (i.e., a value of 1 is returned if the RF model 
score is greater than or equal to the threshold found above) to form a series of initial 
detections for the model every 30 minutes. 
 
These initial detections from each RF model are subjected to a second-stage detection 
test to further reduce the false alarm rate.  During the second stage, binary integration is 
performed over a sliding window of the past n initial detections. The accumulated 
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detections are normalized by n, giving a mean score for the pre- and post-fever RF 
models.  Next, scores are combined by taking the maximum of the pre- or post-fever 
values to create a single time series. At each 30 minute time interval, this combined 
score is compared to a final declaration threshold of m/n, where m ≤ (we selected n=24 
for a system latency of no more than 12 hours and selected m=11 which approximates 
the optimum binary integration threshold for a steady signal in noise [65]; performance 
is relatively insensitive to small deviations in m or n). The algorithm makes a 
‘declaration’ that the subject is in the exposed class when the combined score is greater 
than or equal to m/n; if the threshold is not met, the algorithm assigns the subject to the 

‘not exposed’ class for that time epoch.  Note that n samples are required before a 
declaration can be made, so following the start of data collection or the end of an 
exclusion period (the 24h period following the challenge), no declarations are reported 

in the first 30n minutes (for n=24, this accumulation period effectively extends the 
exclusion period to 36 hours post-challenge). 
 
Threshold levels for the pre- and post-fever RFs are estimated by analyzing false alarm 
rates (Type I errors) of the final declarations versus threshold levels (swept from 0 to 1). 

We define the probability of false alarm (or Pfa) as  

𝑃!" =  
# 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + # 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

 

To enforce a desired significance level (we choose Pfa  = 0.01), we evaluate Pfa for the 
final declarations for subjects in the current partition and estimate the smallest 
threshold needed in the stage-one detection shown in Figure 2b.   This approach is 
repeated for three partitions in each study, resulting in independent estimates of the 
threshold pair (pre- and post-fever) for each partition.  While the desired Pfa = 0.01, the 

final overall system Pfa may be higher or lower.  
 

To evaluate system-level performance, we define probability of correct declaration Pd  as: 

𝑃! =  
# 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + # 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
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and Pfa as above, where the True Positives, False Positives, True Negatives and False 
Negatives are evaluated on the final declaration outputs of Figure 2b. When reporting Pd 
and Pfa for a study, we include the 95% confidence interval based on standard normal 
distributions since the number of trials per study is large (>2000). Although some 
correlation is likely within a binary integration window of 30n minutes, we assume 
independence for trials separated by at least 30n minutes. We generate receiver 

operating characteristic (ROC) curves to measure system performance by calculating Pd 

vs Pfa at a series of threshold values (sweeping the first-stage detection threshold but 
holding the second-stage m/n threshold constant) and quantify the system performance 
with the ROC area under the curve (AUC), where an AUC=1.0 indicates perfect 
performance and AUC=0.5 indicates that the model is no better than a coin toss.  

Sensitivity (Pd) is expected to be highest after febrile symptoms are apparent.  To 

distinguish the sensitivity of the system during the pre- and post-fever epochs, Pd is 
calculated independently for subsets of positive data that occur before and after the 
onset of fever.  The result is two ROC curves and corresponding AUCs: one evaluated 
on positive data restricted to pre-fever time samples and the other restricted to post-
fever time samples.  The negative data and two-stage detection process are identical for 
both ROC curves.   
 
In a clinically or military-deployed early-warning system, it may be desirable to 
calculate Pd and Pfa on a per-device or per-day basis.  However, for this proof-of-concept 
study, the limited pool of subjects available (N=20 total) necessitates calculating Pd and 
Pfa across all 30-minute test points that are not in the exclusion window (12h before and 
24h after exposure).  This approach includes false negatives that may occur after an 
initial early-warning declaration is made, and thus provides a conservative estimate of 
the device sensitivity which we predict will further increase with larger sample sizes 
and more refined processing algorithms. 
 
Another important measure of system performance is the mean early warning time.  
The early warning time for an individual subject is defined as the time of the first true 
declaration (excluding data from the 24 h interval immediately following the challenge) 
minus the time of fever onset (defined as 1.5ºC above a diurnal baseline [38] sustained 
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for two hours).  Early warning times vary across subjects in a study, so the mean value 
is calculated across all subjects to characterize the early warning time afforded by the 
system. 
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Virus Exposure  

method 
Subjects Species Monitoring system Target 

dose 
(pfu) 

EBOV Aerosol 6 Cynomolgus  3 subjects with ITS T37F 
3 subjects with DSI L11 

100 

MARV Aerosol 5 Rhesus ITS T27F 1000 
MARV IM 9 Cynomolgus ITS T27F 1000 
 
Table 1: Summary of NHP studies used. The EBOV study compared two different 
physiological monitoring systems but data was combined and treated identically.  
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Figure 1: Notional schematic of the probability of detection (Pd) for current symptoms-
based detection (red curve) and an ideal signal (green curve) versus time (viral 
exposure at t=0), overlaid with a typical evolution of symptoms.  An ideal sensor and 
analysis system would be capable of detecting exposure for a given Pd (and probability 
of false alarm, Pfa) during the incubation period (tideal), well before the non-specific 
symptoms of the prodrome (tfever).  We define the difference Δt = tfever - tideal  as the early 
warning time (details below). 
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Figure 2: Workflow of our (a) classification approach using random forests and (b) 
block diagram of a two-stage detection algorithm to reduce false alarms. The detection 
scheme comprises two distinct stages: after the random forest model score output, an a 
priori determined threshold (based on a desired Pfa) is applied to yield initial detections.  
These are then subjected to a binary integration step of the past n samples, and the 
maximum value of the pre- and post-fever models are taken to produce a single time 
series.  A second stage m of n detection is applied, which finally produced a final 
‘declaration’ of being exposed or not. See Methods for detailed descriptions. 
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Figure 3: Example of mean (a) temperature and (b) heart rate time courses reported 
every 30 min from on subject in the MARV aerosol study. The blue curves indicate an 
average diurnal value for this subject before exposure.  Same (c) temperature and (d) 
heart rate data after normalization and calculation of mean, standard deviation, and 
quantiles. Vertical red lines indicate the onset of fever, defined here as 1.5°C above the 
diurnal baseline sustained for 2h. These data are the features provided to the 
classification algorithm. 
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Figure 4: Representative single subject combined scores for the intra-study validations: 
(a) MARV aerosol, (b) MARV IM, and (c) EBOV aerosol. Scores are updated and plotted 
at 30 minute intervals and declarations (green triangles) are made when the score 
exceeds the m/n (11/24) threshold. Declarations before exposure (t=0) are false 
positives; scores after exposure below the dashed horizontal threshold line are false 
negatives. The time between the green and red vertical lines is the early warning time 
afforded by our algorithm.  Note that data 12h before and 24h after exposure is 
disregarded due to animal anesthesia during exposure. 
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Figure 5: Examples of single subject algorithm outputs and declarations after false 
positive thresholding for two cross-study validations: (training set/testing set) (a) 
MARV IM/MARV aerosol, which use the same pathogen, and (b) EBOV aerosol / 
MARV aerosol, which holds the exposure route constant.   
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Figure 6: ROC curves and sensitivity vs. time plots for (a,b) MARV aero intra-study 
validation, (c,d) MARV IM/MARV aerosol cross-study, and (e,f) aggregated study 
validation tests.  Nearly perfect algorithm performance is seen in the febrile prodrome, 
with only slightly lower performance during the incubation period.  (b) , (d), and (f) 
show the percent of subjects correctly declared as “exposed” as a function of time before 
fever for the MARV aero intra-study (false detection rate Pfa<0.001), MARV IM/MARV 
aerosol cross-study (Pfa=0.04±0.01), and aggregated cross-study (Pfa<0.0005) validation 
tests, respectively.  The green vertical lines represent the mean early warning time for 
the entire study. 
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Figure 7:  Using only ECG-derived features from the MARV aerosol study to train the 
model, one representative subject’s (a) combined score output, (b) corresponding ROC 
curves for the entire study, and (c) percentage of correctly declared subjects versus early 
warning time.  Since core body temperature is no longer available to the algorithm, 
model performance during the febrile prodrome is slightly worse than the pre-fever 
incubation period. Furthermore, while the overall AUC performance drops relative to 
the feature sets shown above, this limited set could be collected entirely using wearable 
monitoring devices. 
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Figure 8: Box-and-whisker plot summarizing the early warning times from both intra- 
and cross-study validations.  White vertical lines indicate the median value for each 
study, boxes show the first and third quartiles, and whiskers represent the largest and 
smallest value. Intra-study MARV tests using all available features give the largest early 
warning times, and the intra-study EBOV test showed the worst performance.  Cross-
study validations, including the aggregate study that considered all data over all 
studies, have very similar performance, suggesting algorithm robustness against virus 
strain and exposure routes.  Reducing the feature set systematically degrades algorithm 
performance; the best performance is observed using all available ECG-derived 
features, and the worst performance when only heart rate is considered.  This suggests 
that subtle electrophysiological features in the ECG signal (PR, QT, QRS intervals, etc.) 
are some of the most discriminating for our classification algorithm. 
 


